Decarbonisation Technology - May 2024 Issue

renewable power generation technologies such as wind turbines is nearly three times higher in 2070 than in baseline projections (IEA, 2019). Plastics and cement are also used for various clean energy technologies and infrastructure, including electric vehicles, wind turbines, and solar panels. For some industries, there are as yet no low-carbon solutions available other than the use of carbon capture. For example, one of the main ingredients in cement,

Chemical production for materials such as plastic will be crucial for supporting the energy transition

and design (FEED) and pre-FEED phases, early engagement with experts in this field is essential. Carbon capture could very likely be the linchpin for decarbonising these essential, carbon-intensive industries. However, failure to scale up the deployment of this technology at pace could be detrimental to our ability to reach net zero fast enough to avoid exceeding 2°C of global warming. What makes an industry ‘hard to abate’? Heavy industries make products that are essential to our modern way of life. From cars to hospital equipment, it would be impossible to simply switch off our dependency on them. Therefore, despite their emissions and energy intensity, the steel, cement, and chemical industries are with us to stay. While there are some lower carbon options to make many of the materials we need, not all of these are yet demonstrated at scale, and we cannot afford to wait for an entirely new fleet of freshly built clean steel plants to be constructed, for example. Beyond their critical role today, heavy industry sectors will provide many of the key inputs required for a sustainable energy transition. Much of the infrastructure needed to build a low-carbon economy will be made of steel and cement. For example, in the IEA’s Sustainable Development Scenario, steel demand for

clinker, is made by heating limestone to very high temperatures in the calcination process. This process drives carbon dioxide (CO₂) off the limestone (CaCO₃) to produce the clinker, lime (CaO), as an unavoidable part of the process. In most existing cement plants, the heat for this process is also provided by burning fossil fuels, although more and more sites are switching to low-carbon fuels such as refuse-derived fuels and biomass to reduce their carbon footprint. However, it remains that up to half of the CO₂ emissions from such plants arise purely from the chemistry of clinker production. Heavy industries also face further challenges when it comes to emissions reduction, particularly cost. Implementing decarbonisation projects in any sector can require high financial investment, though this can be particularly painful when the industry itself is already hard to decarbonise. Heavy industrial companies tend to have long-lived capital assets, typically around 40 years, and retiring these early to switch to alternative technologies can incur major costs. It has been estimated that the total cost to decarbonise heavy industry will range between $11 trillion and $21 trillion (Gross, 2021) through to 2050, depending on the development of innovation, policy framework, and the cost of renewable electricity. Beyond the price tag, challenges can often arise from the existing sites’ logistics. Difficult ground conditions, building upon former

www.decarbonisationtechnology.com

46

Powered by